- · 《计算机产品与流通》栏[06/28]
- · 《计算机产品与流通》收[06/28]
- · 《计算机产品与流通》投[06/28]
- · 《计算机产品与流通》征[06/28]
- · 《计算机产品与流通》刊[06/28]
数学软件在高等数学中绘图与数值计算的实例研
作者:网站采编关键词:
摘要:一、研究的总体思路 在重积分、曲线积分、曲面积分计算教学中,常常会想到重积分区域图、曲面积分的曲面图绘制[1]得对不对,数值计算结果对不对,现借助MATLAB 强大的绘图与计算
一、研究的总体思路
在重积分、曲线积分、曲面积分计算教学中,常常会想到重积分区域图、曲面积分的曲面图绘制[1]得对不对,数值计算结果对不对,现借助MATLAB 强大的绘图与计算功能,能够较轻松地解决传统教科书上的重积分区域图、曲面积分曲面图的绘制及重积分、曲线积分、曲面积分数值计算问题。
二、重积分的区域图绘制与数值计算
(一)二重积分
1.利用直角坐标系计算
例1[2P145].计算其中D 是由抛物线y2=x 及直线y=x-2 所围成的闭区域。
解:首先用MATLAB 绘制出闭区域D 图形的示意图,设计其指令代码如下:fplot(’[-sqrt(x),x-2]’,[08 -2.52.5]);hold on;fplot(’[sqrt(x),x-2]’,[08 -2.52.5]);%fplot 精确绘制y=f(x)二维图形,效果如图1。或是,ezplot(’y^2-x’);hold on;ezplot(’yx+2’);%ezplot 可绘制隐函数f(x,y)=0 的二维图形。或是,x=0∶8/40∶8;y1=-sqrt(x);y2=sqrt(x);y3=x-2;plot(x,y1,x,y2,x,y3);%plot 不精确绘制y=f(x)二维图形。
图1
从图1 中,易知设计计算I 的MATLAB 的程序代码:syms xy;
%二次定积分计算;
运行后得,I=45/8。
2.利用极坐标系计算
例2[2P150].计算其中D 是由圆心在原点、半径为a 的圆周所围成的闭区域。
解:经分析,得
设θ=x,ρ=y,则设计计算I 的MATLAB 的程序代码:syms x y a e;
%二次定积分计算;
上运行后得,
(二)三重积分
例3[2P162].计算三重积分其中Ω 为三个坐标面及平面x+2y+z=1 所围成的闭区域。
解:经分析,得
设计计算I 的MATLAB 的程序代码:syms x y z;
%三次积分计算;
运行后得,I=1/48。
例4[2P164].计算三重积分其中Ω 是由曲面z=x2+y2与平面z=4 所围成的闭区域。
解:首先用MATLAB 绘制出闭区域Ω 图形的示意图,设计其指令代码如下:
效果如图2。
经分析,得
设θ=x,ρ=y,则设计计算I 的MATLAB 的程序代码:syms x y z;
%三次积分计算;
运行后得,I=64/3*pi.即
图2
例5[2P166].求半径为a 的球面与半顶角为α 的内接锥面所围成的立体的体积。
解:经分析,得
设α=b,θ=x,φ=y,设计计算I 的MATLAB 的程序代码:syms x y z a b;
I=int(int(int(z^2*sin(y),z,0,2*a*cos(y)),y,0,b),x,0,2*pi),%三次积分计算;
运行后得,I=-4/3*a^3*cos(b)^4*pi+4/3*a^3*pi.
即
三、曲线积分的数值计算
例6[2P192].计算其中L 是抛物线y=x2上点O(0,0)与B(1,1)之间的一段弧。解:经分析,得
则设计计算I 的MATLAB 的程序代码:syms x;
I=int(x*sqrt(1+4*x^2),x,0,1),%一次积分计算;
运行后得,I =(5*5^(1/2))/12-1/12,即
例7[2P192].计算半径为R、中心角为2α 的圆弧L 对于它的对称轴的转动惯量I(设线密度μ=1)。
解:经分析,得
设α=a,θ=,则设计计算I 的MATLAB 的程序代码:syms a R x;
I=int(R^2*(sin(x))^2*sqrt((-R*sin(x))^2+(R*cos(x))^2),x,-a,a)
%一次积分计算;
运行后得,I=(R^2*(R^2)^(1/2)*(2*a-sin(2*a))),
即I=R3(α-sinαcosα)。
例8[2P193].计算曲线积分其中L 为螺旋线x=acost、y=asint、z=kt 上相应于t 从0 到2π 的一段弧。
解:设计计算I 的MATLAB 的程序代码:syms a k t;
%一次积分计算;
运行后得,
I =(2*pi*(3*a^2 + 4*pi^2*k^2)*(a^2 + k^2)^(1/2))/3,即I=
四、曲面积分的曲面图绘制与数值计算
(一)对面积的曲面积分
例9.计算曲面积分其中∑是球面x2+y2+z2=9 被平面z=2 截出的顶部。
解:(直角坐标绘图法、极坐标绘图法与曲面积分计算可化为二次定积分计算)首先用%直角坐标绘图法绘制出曲面∑在xOy上方图形的示意图,设计其指令代码如下:
文章来源:《计算机产品与流通》 网址: http://www.jsjcpylt.cn/qikandaodu/2021/0421/1237.html
上一篇:皮带秤与输煤程控数据传输与计算
下一篇:酒精制品厂灭火器配置设计