- · 《计算机产品与流通》栏[06/28]
- · 《计算机产品与流通》收[06/28]
- · 《计算机产品与流通》投[06/28]
- · 《计算机产品与流通》征[06/28]
- · 《计算机产品与流通》刊[06/28]
自动化技术论文_基于近端策略优化的阻变存储神
作者:网站采编关键词:
摘要:文章摘要:卷积神经网络在诸多领域已经取得超出人类的成绩.但是,随着模型存储开销和计算复杂性的不断增加,限制处理单元和内存单元之间数据交换的“内存墙”问题阻碍了其在诸
文章摘要:卷积神经网络在诸多领域已经取得超出人类的成绩.但是,随着模型存储开销和计算复杂性的不断增加,限制处理单元和内存单元之间数据交换的“内存墙”问题阻碍了其在诸如边缘计算和物联网等资源受限环境中的部署.基于阻变存储的硬件加速器由于具有高集成度和低功耗等优势,被广泛应用于加速矩阵-向量乘运算,但是其不适合进行32b浮点数计算,因此需要量化来降低数据精度.手工的为每一层确定量化比特位非常耗时,近期的研究针对现场可编程门阵列(field programmable gate array,FPGA)平台使用基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)的强化学习来进行自动量化,但需要将连续动作转换为离散动作,并通过逐层递减量化比特位来满足资源约束条件.基于此,提出基于近端策略优化(proximal policy optimization,PPO)算法的阻变神经网络加速器自动量化,使用离散动作空间来避免动作空间转换步骤,设计新的奖励函数使PPO自动学习满足资源约束的最优量化策略,并给出软硬件设计改动以支持混合精度计算.实验结果表明,与粗粒度的量化相比,提出的方法可以减少20%~30%的硬件开销,而不引起模型准确度的过多损失.与其他自动量化相比,提出的方法搜索时间短,并且在相同的资源约束条件下可以进一步减少约4.2%的硬件开销.这为量化算法和硬件加速器的协同设计提供了参考.
文章关键词:
论文分类号:TP183
文章来源:《计算机产品与流通》 网址: http://www.jsjcpylt.cn/qikandaodu/2021/1029/1779.html